

LA-UR-21-23319

Approved for public release; distribution is unlimited.

Title: Beta Emission & Bremsstrahlung

Author(s): Stults, Katrina Ann

Karpius, Peter Joseph

Intended for: Presentation for Spectroscopic Alarm Adjudication Course

Issued: 2021-04-07

Beta Emission & Bremsstrahlung

Pete Karpius & Katrina Stults

April 2021

LA-UR-21-XXXXX Derived from LA-UR-17-30388

Introduction

- What is beta decay?
- What is bremsstrahlung?
- Why do we care in a gamma-ray spectroscopy class?

What is beta decay?

1. The death of a Siamese fighting fish?

2. The Rise of VHS?

3. Something completely different?

Beta Decay

- When a nucleus has too many protons or neutrons it may undergo beta decay
 - Too many neutrons → β⁻ decay
 - Too many protons → β⁺ decay
- β⁺ particles
 - are the same as positrons
 - quickly undergo pair annihilation
- β- particles
 - are identical to electrons but originate in the nucleus
 - radiate a continuous range of photons as they decelerate in various media

Beta Decay example- Tritium decaying to He-3

 $E = mc^2$ \longrightarrow Mass-Energy difference of ³H and ³He in MeV*: 2809.449895 - 2809.431302 = 0.018593

This is the "endpoint energy of the emitted β particle"

* atomic masses

• The other particle given off, an anti-neutrino. It is undetectable by typical radiation/search detectors.

"Pure" β Emitters

Question Time

- What industrial and medical isotopes are you familiar with are beta emitters?
- Enter answers in chat

What is Bremsstrahlung or "Braking Radiation"?

When a free charged particle enters the influence of another charged particle, it is deflected, like a comet passing the sun.

The charged particle is slowed and radiates photons.

The emitted photons are in a continuous range of energies (up until some maximum or "endpoint").

Idealized β⁻ **Spectrum**

Question Time

What properties of the charged particle impact the bremsstrahlung?

What properties of the material the particle is passing through impact the bremsstrahlung?

TI-204 Bremsstrahlung (Identifinder w Cs-137 seed)

TI-204 Bremsstrahlung (Identifinder w Cs-137 seed)

90Sr / 90Y Level Scheme

Bremsstrahlung Sr/Y-90 (Identifinder w Cs-137 seed)

Bremsstrahlung Sr/Y-90 (Identifinder w Cs-137 seed)

Bremsstrahlung Sr/Y-90 (Detective X)

Bremsstrahlung Sr/Y-90 (Detective X)

Question Time

- What is sometimes the most definitive answer you can give about a spectrum containing a beta emitter?
- A) High confidence isotope ID with activity estimate from end point energy
- B) beta emitter present
- C) nothing, need longer count time

Summary

- Bremsstrahlung is continuous radiation produced by beta particles decelerating in matter
- Different beta emitters have different endpoint energies
- High-energy betas interacting with high-Z materials will more likely produce bremsstrahlung
- Depending on the data, sometimes all you can say is that a beta emitter is present

